

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

C Series Minature Cartridge Valves Precision Fluidics

Innovative solutions for health care success

ENGINEERING YOUR SUCCESS.

When you partner with the global leader in motion and control technologies, expect to move your business and the world forward. From miniature solenoid valves to highly integrated automation systems, our innovations are critical to life-saving medical devices and scientific instruments used for drug discovery and pathogen detection. Not to mention, critical to decreasing time to market and lowering your overall cost of ownership. So partner with Parker, and get ready to move, well, anything.

Table of Contents

	product		page
	C7 Gas	Miniature 7 mm Cartridge Pneumatic Solenoid Valve	4
	C7 Liquid	Miniature 7 mm Cartridge Liquid Valve	15
	C15 Gas	Miniature 15 mm Cartridge Pneumatic Solenoid Valve	25
	C15 Liquid	Miniature 15 mm Cartridge Liquid Valve	36
	C21 Gas	Miniature 21 mm Cartridge Pneumatic Solenoid Valve	46
80	C21 Liquid	Miniature 21 mm Cartridge Liquid Valve	57

C7 Valve Miniature Cartridge Solenoid Valve

7 mm Miniature Cartridge Valve

Typical Markets

- Respiratory and Anesthesia
- · Patient Therapy
- · Patient Monitoring
- Analytical Chemistry
- Clinical Diagnostics

Typical Applications

- Portable/Transport Ventilators Gas Control
- Negative Pressure Wound Therapy
- Air Over Liquid Dispense
- Sidestream CO, measurement
- Portable/Hand held environmental monitoring

The Series C7 is a miniature cartridge style solenoid valve with a compact 7 mm diameter. This unique design combines small size, light weight and low power consumption with high flow repeatability and fast response time over an exceptionally long life, up to 130 million cycles. Available in 2-way and 3-way configurations, the valve is manifold mounted utilizing a simple securing system reducing assembly time.

Features

- Variety of orifice sizes with pressures up to 145 PSI (10 bar).
- Floating frictionless plunger enables reliable and repeatable operation up to 130 Million cycles.
- Low power design reduces heat and energy consumption.
- Cartridge configuration enables compact integration saving space and weight.
- Simple mechanical fastening prevents valve being dislodged due to vibration or pressure spikes.
- RoHS & REACH compliant.

Product Specifications

Mechanical

Valve Type:

Solenoid Cartridge Valve 2-Way Normally Closed (NC) 3-Way Normally Closed (NC)

Media: Gases and Liquids* (see details in liquid datasheet)

Operating Environment:

32°F to 122°F (0°C to 50°C)

Storage Environment:

-40°F to 158°F (-40°C to 70°C)

Dimensions:

- Diameter: 0.28 in (7 mm)

- Length: 0.79 in (20 mm)

Porting:

- Cartridge Seal

Weight: 0.11 oz (3.1 g)

Internal Volume:

2-Way: 81μL 3-Way: 90μL

	Orifice	fice 0.012 in (0.3 mm)		0.020 in	(0.5 mm)	0.031 in	(0.8 mm)	0.039 in (1.0 mm)		
	Туре	2-Way	3-Way	2-Way	3-Way	2-Way	3-Way	2-Way	3-Way	
<u>«خ</u>	PSI	145	145	116	87	73	36.3	43.5	21.8	
Vacuum	Bar	10	10	8	6	5	2.5	3	1.5	
Max Vac	3 (0.003	0.004	0.007	0.01	0.009	0.014	0.015	0.015	
ž	SLPM (air)	7	7	14	11	12	10	13	7	

Electrical

Voltage (VDC):

12 and 24 VDC ± 5%

(Other voltages available on request.)

Electrical Connections:

3.2 in (80 mm) Flying Leads

Power:

Typical 0.5W - 1.2W

(Please see Table 1 for more details)

Wetted Materials

Body:

Stainless Steel Series 300 and 400

Seals: (Internal and External)

FKM, EPDM

Performance Characteristics

Response:

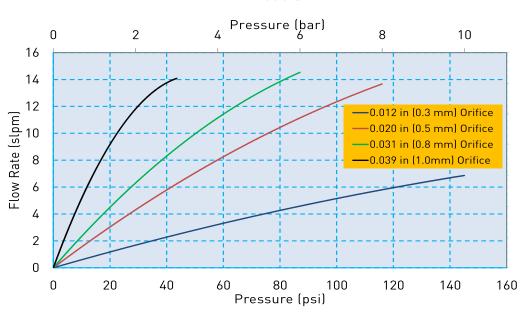
10 ms Maximum, Cycling

Recommended Filtration:

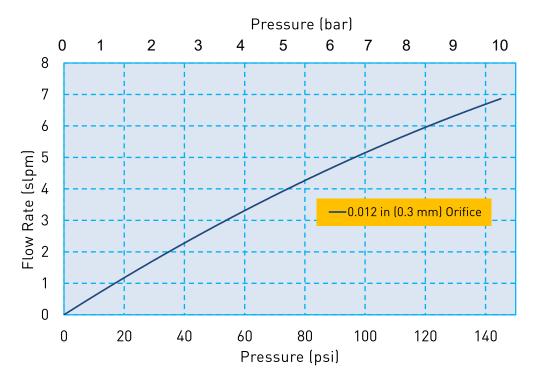
0.3 mm Orifice

5 µm

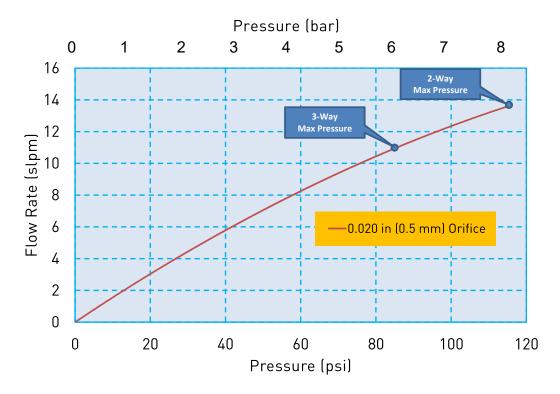
0.5 mm, 0.8 mm, & 1.0 mm Orifice 10 µm

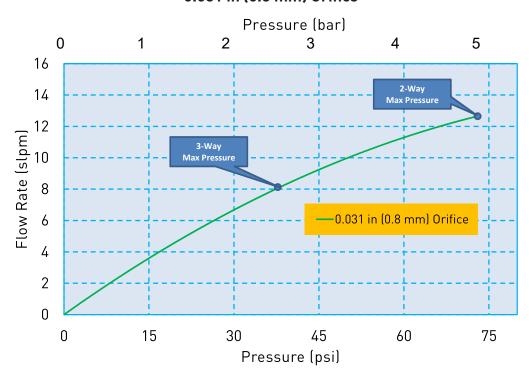

Reliability:

2-Way: 130 Million Cycles 3-Way: 55 Million Cycles 0.90 Reliability Factor 95% Confidence


Flow Curve

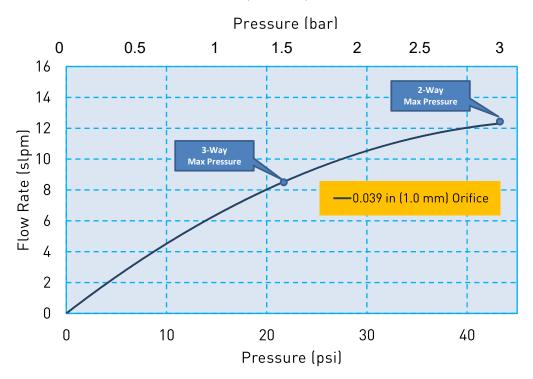
Flow Curve


0.012 in (0.3 mm) Orifice



Flow Curve

0.020 in (0.5 mm) Orifice


0.031 in (0.8 mm) Orifice

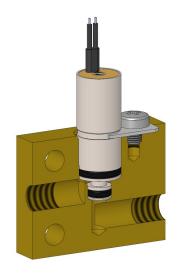
Flow Curve

0.039 in (1.0 mm) Orifice

Electrical Interface

Wire Leads
Standard: 3.2 in (80 mm) Wire Leads, stripped at end

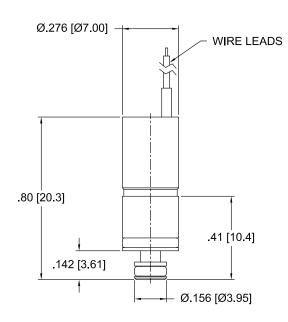
Electrical Requirements

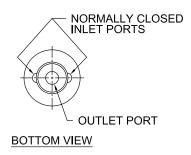

Table 1

Orifice	0.012 in		(0.3 mı	m)	0.020 in (0.5 mm)		0.	031 in	(0.8 mr	n)	0.039 in (1.0 n			n)		
Valve Type	2-V	Vay	3-V	Vay	2-1	Vay	3-V	Vay	2-V	Vay	3-V	Vay	2-V	Vay	3-V	Vay
Voltage (VDC)*	12	24	12	24	12	24	12	24	12	24	12	24	12	24	12	24
Power (Watts)	0.5	0.6	1	1.2	1	0.85	1	1.2	1	1.2	1	1.2	1	1.2	1	1.2
Resistance (Ohm)**	288	995	140	495	140	700	140	495	140	495	140	495	140	495	140	495
	* ± 5%, other voltages available on request															

** ±5% @ 68°F, 20°C

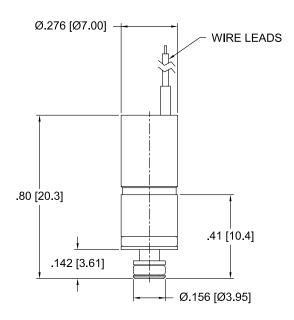
Pneumatic Interface/Mechanical Integration

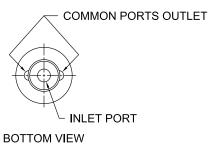




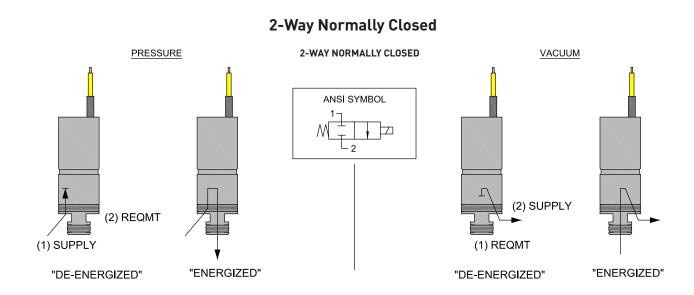
Dimensions

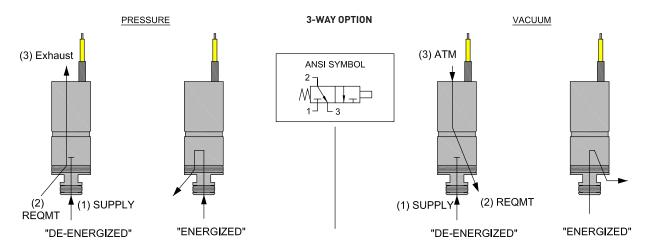
2-Way Valve Configuration




UNITS IN [MM]

3-Way Valve Configuration

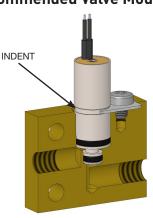

TOP VIEW



ANSI Symbols

3-Way Normally Closed

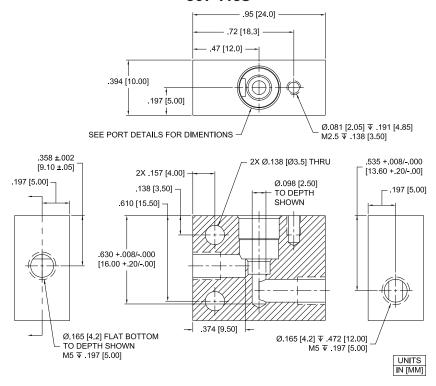
Installation and Use


During installation of the C7 valve, the maximum force allowed to press it into the manifold is: 6.74 lbf (30 N) Lubrication is recommended (I.E. alcohol or DI water depending on compatibility constraints)

Recommended Valve Manifold Dimensions

.287 + .004 [7.29 + .10 mm] .280 + .002 [7.11 + .05 mm] .157 + .002 [4.00 + .05 mm] .020 + .008 [0.50 + .20 mm] .165 ± .002 [7.11 ± .05 mm] .280 ± .002 [7.11 ± .05 mm]

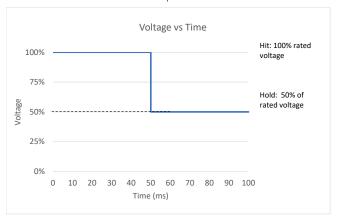
Ø.098 [2.50 mm] -


Recommended Valve Mounting

The correct location to use when holding the valve in place in the manifold is the indent at the middle of the valve body. If the top of the valve is used to hold the valve in place, the working pressure the valve will see, can push the valve upward and exceed the maximum insertion force for the valve. This could damage the valve.

Installation and Use

C7 Evaluation Manifold Dimensions and Design C07-MCS


Installation and Use

Optional Reduced Power Control Method

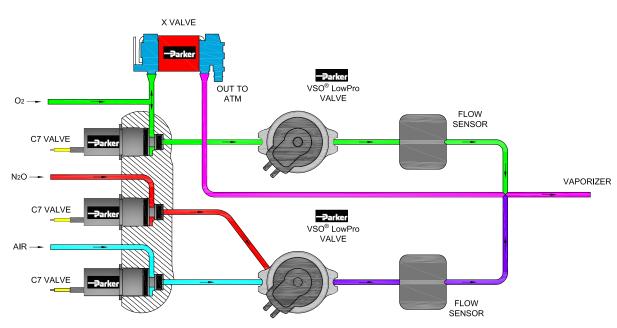
"Hit and Hold" is an optional control method to increase power efficiency for the C7 series valves.

Hit and Hold is a common control method used to reduce component power consumption and heat generation without sacrificing performance. The "Hit" or "Spike" state refers to the rated voltage required to actuate the valve. The "Hold" state is a substantial reduction in the rated voltage (normally 50% of the rated voltage) that maintains the valve in an actuated state.

Hit and Hold control can be incorporated using several different approaches, including discrete component circuits or programmable logic. The graph below illustrates a voltage "Hit" and "Hold" control method, however pulse width modulation (PWM) is also an acceptable control method.

C7 Hit and Hold Specification						
Hit Voltage Level	Rated Voltage					
Hold Voltage Level	50% of Rated Voltage					
Minimum Hit Time	50 ms					
Maximum Hit Time	N/A					
PWM Frequency	1 kHz					
(Minimum)	1 KHZ					
Hold Nominal Duty Cycle	50%					

This method greatly reduces power consumption because the valve only draws full current for a short period of time making it ideal for applications with sensitive power budgets.


Note: 50% duty cycle is a general recommendation; therefore, it is recommended that specific application testing is completed to verify the proper "hold" requirement. Factors that could impact hit and hold voltage levels include vibration, shock, pressure variation and pressure locations that are driven from specific usage. The hit and hold circuit design, combined with Parker's valve, need to be validated for each specific application to ensure the valve will actuate under all usage conditions. **Contact Factory for more details**.

Typical Flow Diagram

Anesthesia Gas Blending Circuit

NORMAL SYSTEM

Accessories

C7 Evaluation Manifold with clip and screw (Valve not included)

C07-MCS

Replacement Screw for C07-MCS

C07-S

Replacement FKM O-Ring for C7 Valve, Large C07-LG

0

Replacement FKM 0-Ring for C7 Valve, Small

C07-SM

Ordering Information

Sample Part ID	C 07	- 2	24	FK	03	F	F	- 000
Description	Series	Configuration	Coil Voltage	Elastomer	Orifice	Mounting Style	Electrical Interface	Custom
Options	C07: 7 mm Cartridge Valve	2: 2-Way 3: 3-Way		FK: FKM	03: 0.012 in (0.3 mm) 05: 0.020 in (0.5 mm) 08: 0.031 in (0.8 mm) 10: 0.039 in (1.0 mm)	F: Face Seal	F: 3.2 in (80 mm) flying lead	000: Standard

Accessories
C07-MCS: C07 Evaluation Manifold with Clip and Screw, Not supplied with the valve.
C07-C: Replacement Clip used on C07-MCS*
C07-S: Replacement Screw used on C07-MCS*
C07-LG: Spare O-Ring for C07 Valve, FKM, Large**
C07-LGE: Spare O-Ring for C07 Valve, EPDM, Large**
C07-SM: Spare O-Ring for C07 Valve, FKM, Small**
C07-SME: Spare O-Ring for C07 Valve, EPDM, Small**
* Not Supplied with Valve, Replacement Part for C07-MCS ** Supplied with Valve

NOTE: For Evaluation - Please Add C07-MCS To Your Sample Order. All Valves Ship With O-Rings Installed

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button to configure your C7 valve. For CAD models and more detailed information, please visit us on the Web (www.parker.com/precisionfluidics/C7_GasCartridgeValve), call (+1.603.595.1500) or email at ppfinfo@parker.com.

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

PPF-MSV-002/US March 2019

C7 Valve Miniature Cartridge Liquid Valve

7 mm Miniature Liquid Cartridge Valve

Typical Markets

- Analytical Chemistry
- Clinical Diagnostics
- Environmental Monitoring
- Print

Typical Applications

- · Reagent Addition
- Wash
- Waste
- Flow Control
- Large format Inkjet systems

The Series C7 is a miniature cartridge style solenoid valve with a compact 7 mm diameter. This unique design combines small size, light weight and low power consumption with high flow repeatability and fast response time over an exceptionally long life, up to 130 million cycles. Available in 2-way configurations, the valve is manifold mounted utilizing a simple securing system reducing assembly time.

Features

- Variety of orifice sizes with pressures up to 145 PSI (10 bar).
- Floating frictionless plunger enables reliable and repeatable operation up to 130 Million cycles.
- Low power design reduces heat and energy consumption.
- Cartridge configuration enables compact integration saving space and weight.
- Simple mechanical fastening prevents valve being dislodged due to vibration or pressure spikes.
- RoHS & REACH compliant.

Product Specifications

Mechanical

valve Type:
Solenoid Cartridge Valve
2-Way Normally Closed (NC)
Media: Gases* and Liquids
(For gas performance see the Gas
datasheet)
Operating Environment:
32°F to 122°F (0°C to 50°C)
Storage Environment:
-40°F to 158°F (-40°C to 70°C)
Dimensions:
- Diameter: 0.28 in (7 mm)
- Length: 0.79 in (20 mm)
Porting:
- Cartridge Seal
Weight: 0.11 oz (3.1 g)
Internal Volume:
2-Way: 81µL

-	Orifice	0.012 in (0.3 mm)	0.020 in (0.5 mm)	0.031 in (0.8 mm)	0.039 in (1.0 mm)
త	Туре	2-Way	2-Way	2-Way	2-Way
	PSI	145	116	73	43.5
Vacuum	Bar	10	8	6	3
Max	SCCM (water)	146	260	429	415

Electrical

Voltage (VDC):

12 and 24 VDC ± 5%

(Other voltages available on request.)

Electrical Connections:

3.2 in (80 mm) Flying Leads

Power:

Typical 0.5W - 1.2W

(Please see Table 1 for more details)

Wetted Materials

Body:

Stainless Steel Series 300 and 400

Seals: (Internal and External)

FKM, EPDM FFKM on request

*Please contact factory for additional details on gas compatibility.

Performance Characteristics

Response:

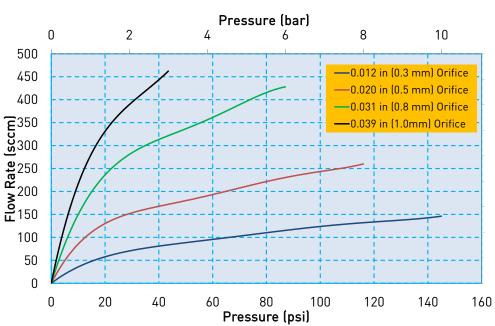
10 ms Maximum, Cycling

Recommended Filtration:

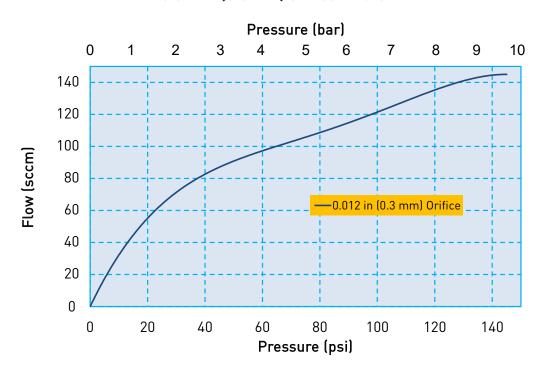
0.3 mm Orifice

5 µm

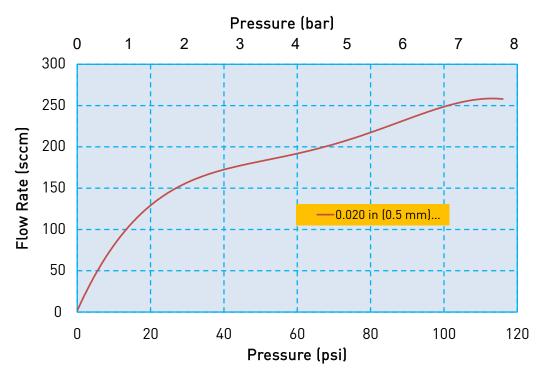
0.5 mm, 0.8 mm, & 1.0 mm Orifice 10 µm

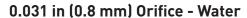

Reliability:

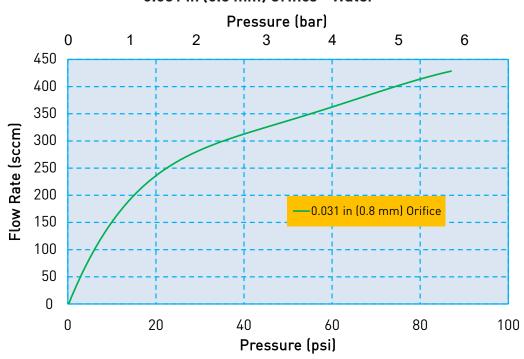
2-Way: 130 Million Cycles 0.90 Reliability Factor 95% Confidence


Flow Curve

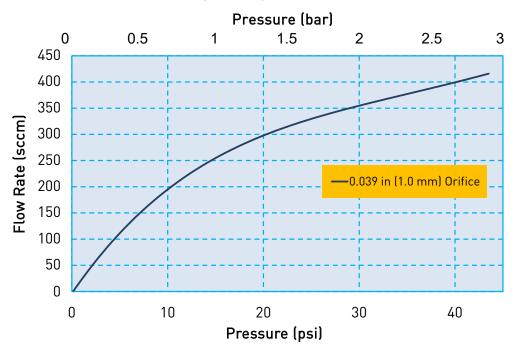
Flow Curve


0.012 in (0.3 mm) Orifice - Water





Flow Curve



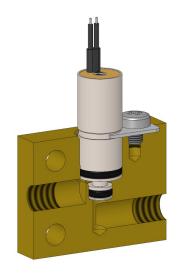
Flow Curve

0.039 in (1.0 mm) Orifice - Water

Electrical Interface

Wire Leads
Standard: 3.2 in (80 mm) Wire Leads, stripped at end

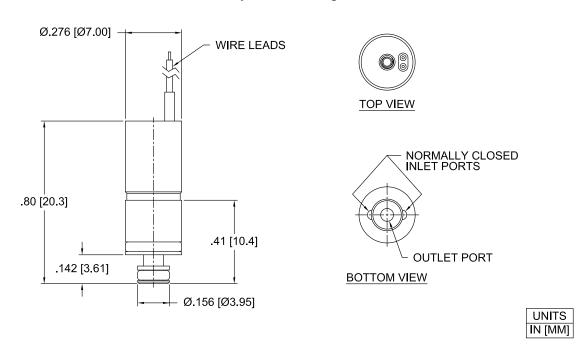
Electrical Requirements


Table 1

Orifice	0.012 in (0.3 mm)		0.020 in (0.5 mm)		0.031 in	(0.8 mm)	0.039 in (1.0 mm)	
Valve Type	2-Way		2-Way		2-V	Vay	2-Way	
Voltage (VDC)*	12	12 24		24	12	24	12	24
Power (Watts)	0.5	0.6	1	0.85	1	1.2	1	1.2
Resistance (Ohm)**	288	995	140	700	140	495	140	495

^{*} \pm 5%, other voltages available on request

Liquid Interface/Mechanical Integration



^{** ±5% @ 68°}F, 20°C

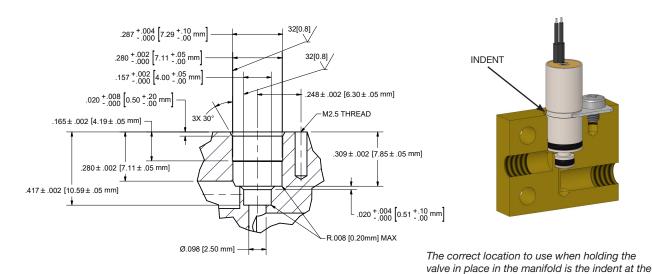
Dimensions

2-Way Valve Configuration

ANSI Symbols

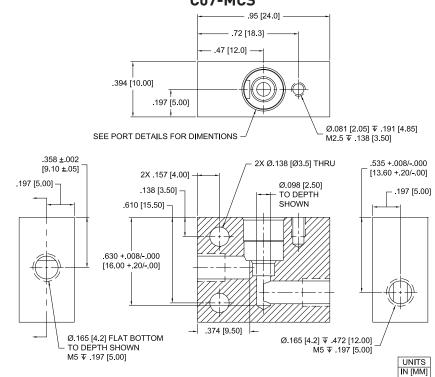
2-WAY NORMALLY CLOSED PRESSURE 2-WAY NORMALLY CLOSED ANSI SYMBOL (2) REQMT (1) SUPPLY "DE-ENERGIZED" "DE-ENERGIZED" "ENERGIZED" "ENERGIZED" "ENERGIZED"

Installation and Use


During installation of the C7 valve, the maximum force allowed to press it into the manifold is: 6.74 lbf (30 N) Lubrication is recommended (I.E. alcohol or DI water depending on compatibility constraints)

Recommended Valve Manifold Dimensions

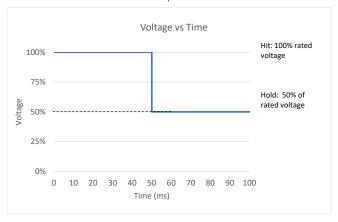
Recommended Valve Mounting


middle of the valve body. If the top of the valve is used to hold the valve in place, the working pressure the valve will see, can push the valve upward and exceed the maximum insertion

force for the valve. This could damage the valve.

Installation and Use

C7 Evaluation Manifold Dimensions and Design C07-MCS


Installation and Use

Optional Reduced Power Control Method

"Hit and Hold" is an optional control method to increase power efficiency for the C7 series valves.

Hit and Hold is a common control method used to reduce component power consumption and heat generation without sacrificing performance. The "Hit" or "Spike" state refers to the rated voltage required to actuate the valve. The "Hold" state is a substantial reduction in the rated voltage (normally 50% of the rated voltage) that maintains the valve in an actuated state.

Hit and Hold control can be incorporated using several different approaches, including discrete component circuits or programmable logic. The graph below illustrates a voltage "Hit" and "Hold" control method, however pulse width modulation (PWM) is also an acceptable control method.

C7 Hit and Hold Specification						
Hit Voltage Level	Rated Voltage					
Hold Voltage Level	50% of Rated Voltage					
Minimum Hit Time	50 ms					
Maximum Hit Time	N/A					
PWM Frequency	1 kHz					
(Minimum)	1 KHZ					
Hold Nominal Duty Cycle	50%					

This method greatly reduces power consumption because the valve only draws full current for a short period of time making it ideal for applications with sensitive power budgets.

Note: 50% duty cycle is a general recommendation; therefore, it is recommended that specific application testing is completed to verify the proper "hold" requirement. Factors that could impact hit and hold voltage levels include vibration, shock, pressure variation and pressure locations that are driven from specific usage. The hit and hold circuit design, combined with Parker's valve, need to be validated for each specific application to ensure the valve will actuate under all usage conditions. **Contact Factory for more details**.

Chemical Compatibility Chart*

		Seal Options					
Chemical	FFKM	FKM	EPDM	Stainless Steel			
DI Water	1	1	1	1			
Methanol	1	4	1	2			
Isopropanol	1	1	1	1			
Ethanol	1	3	1	1			
Acetonitrile	1	4	1				
Tetrahydrofuran	1	4	4				
Toluene	1	2	4	1			
MEK	4	1	1	3			
Organic Acids - Dilute	1	1	1	4			
Non Organic Acids - Dilute	1	1	1	2			
Bases - Dilute	1	1	1	1			
Saline	1	1	1	2			
Bleach 12%	2	1	1	4			
Sodium Hydroxide 20%	1	2	1	2			

^{*}The above is an Abbreviated Chemical Compatibility Chart. Please consult factory for additional information.

Compatibility Legend

- 1. EXCELLENT

 Minimal or no effect
- 2. GOOD

 Possible swelling and or loss of physical properties
- 3. DOUBTFUL

 Moderate or severe swelling
 and loss of physical properties
- 4. NOT RECOMMENDED

 Severe effect and should
 not be considered

C7 Evaluation Manifold with clip and screw (Valve not included)

C07-MCS

Replacement Clip for C07-MCS

0

Replacement Screw for C07-MCS C07-S

Replacement O-Ring for C7 Valve, Large

C07-LG (FKM) C07-LGE (EPDM)

Replacement FKM 0-Ring for C7 Valve, Small

C07-SM (FKM) C07-SME (EPDM)

Accessories

Ordering Information

Sample Part ID	C 07	- 2	24	FK	03	F	F	- 000
Description	Series	Configuration	Coil Voltage	Elastomer	Orifice	Mounting Style	Electrical Interface	Custom
Options	C07: 7 mm Cartridge Valve			FK: FKM	03: 0.012 in (0.3 mm) 05: 0.020 in (0.5 mm) 08: 0.031 in (0.8 mm) 10: 0.039 in (1.0 mm)	F: Face Seal	F: 3.2 in (80 mm) flying lead	000: Standard

Accessories										
C07-MCS: C07 Evaluation Manifold with Clip and Screw, Not supplied with the valve.										
C07-C: Replacement Clip used on C07-MCS*										
C07-S: Replacement Screw used on C07-MCS*										
C07-LG: Spare O-Ring for C07 Valve, FKM, Large**										
C07-LGE: Spare O-Ring for C07 Valve, EPDM, Large**										
C07-SM: Spare O-Ring for C07 Valve, FKM, Small**										
C07-SME: Spare O-Ring for C07 Valve, EPDM, Small**										
* Not Supplied with Valve, Replacement Part for C07-	-MCS ** Supplied with Valve									

NOTE: For Evaluation - Please Add C07-MCS To Your Sample Order. All Valves Ship With O-Rings Installed

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button to configure your C7 valve. For CAD models and more detailed information, please visit us on the Web (www.parker.com/precisionfluidics/C7_LiquidCartridgeValve), call (+1.603.595.1500) or email at ppfinfo@parker.com.

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

C15 Valve Miniature Cartridge Solenoid Valve

15 mm Miniature Cartridge Valve

The Series C15 is a miniature cartridge style solenoid valve with a unique design that combines small size, light weight and low power consumption with high flow repeatability and fast response time over an exceptionally long life, up to 500 million cycles. Available in 2-way and 3-way configurations, the valve is manifold mounted utilizing a simple securing system reducing assembly time.

Typical Markets

- Medical and Analytical Gas Control
- · Respiratory & Anesthesia

Typical Applications

- Portable/Transport Ventilators
- Negative Pressure Wound Therapy
- Air Over Liquid Dispense
- Sidestream CO2 measurement
- Portable/Hand held environmental monitoring

Features

- Variety of orifice sizes with pressures up to 145 PSI (10 bar).
- Floating frictionless plunger enables reliable and repeatable operation up to 500 Million cycles.
- Low power design reduces heat and energy consumption.
- Cartridge configuration enables compact integration saving space and weight.
- Simple mechanical fastening prevents valve being dislodged due to vibration or pressure spikes.
- RoHS & REACH compliant.

Product Specifications

Mechanical

Valve Type: Solenoid Cartridge Valve 2-Way Normally Closed (NC) 3-Way Normally Closed (NC) Media: Gases and Liquids* (See details in liquid datasheet) **Operating Environment:** 32°F to 122°F (0°C to 50°C)

Storage Environment:

-40°F to 158°F (-40°C to 70°C)

Dimensions:

- Diameter: 0.59 in (15 mm)

- Length: 1.14 in (29 mm)

Porting:

- Cartridge Seal

Weight: 0.78 oz (22 g)

Internal Volume:

2-Way: 391 µL 3-Way: 461 µL

Orifice		0.020 in	(0.5 mm)	0.040 in	(1.0 mm)	0.060 in	(1.5 mm)	0.080 in (2.0 mm)		
	Туре	2-Way	3-Way	2-Way	3-Way	2-Way	3-Way	2-Way	3-Way	
<u>مح</u>	PSI	145	145	116	102	58	50.8	21.8	14.5	
Vacuum	Bar	10	10	8	7	4	3.5	1.5	1	
Max Va Pres	Cv	0.01	0.01	0.032	0.028	0.058	0.048	0.093	0.076	
ž	SLPM (air)	18	18	55	43	55	41	44	29	

Electrical

Voltage (VDC):

12 and 24 VDC ± 5%

(Other voltages available on request.)

Electrical Connections:

3.2 in (80 mm) Flying Leads

Power:

Typical 1.1W - 1.7W

(Please see Table 1 for more details)

Wetted Materials

Body:

Stainless Steel Series 300 and 400

Seals: (Internal and External)

FKM, EPDM

Performance Characteristics

Response:

10 ms Maximum, Cycling

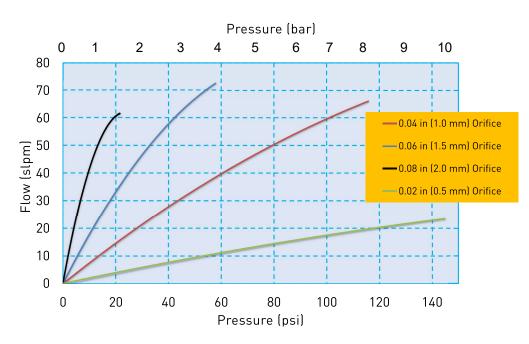
Proof Pressure:

120% of Rated Maximum Pressure

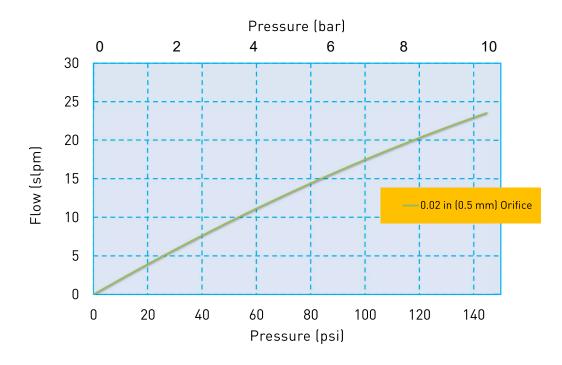
Recommended Filtration:

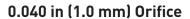
10 µm

Reliability:


2-Way: 500 Million Cycles 3-Way: 200 Million Cycles 0.90 Reliability Factor 95% Confidence

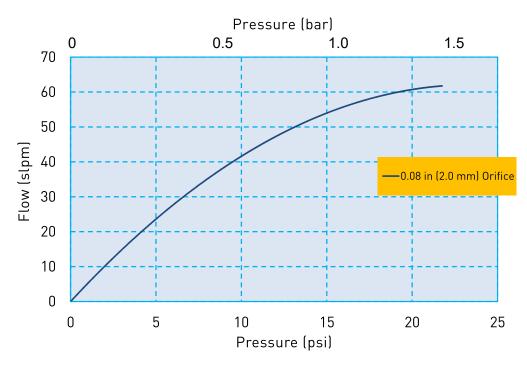
^{*}Please contact factory for additional details on liquid compatibility.


Flow Curve


Flow Curve

0.020 in (0.5 mm) Orifice

Flow Curve


0.060 in (1.5 mm) Orifice

Flow Curve

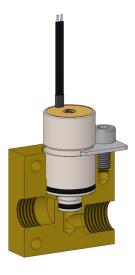
0.080 in (2.0 mm) Orifice

Electrical Interface

Wire Leads
Standard: 3.2 in (80 mm) Wire Leads, stripped at end

Electrical Requirements

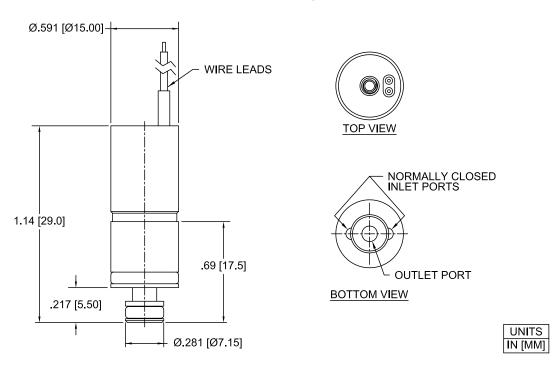
Table 1

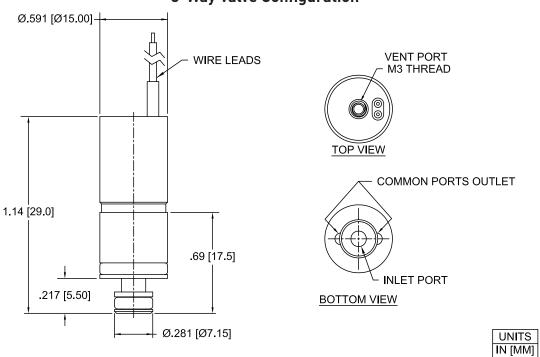

Orifice 0.020 in (0.5		(0.5 mi	m)	0.040 in (1.0 mm)			0.060 in (1.5 mm)				0.080 in (2.0 mm)					
Valve Type	2-Way		3-Way		2-Way		3-Way		2-Way		3-Way		2-Way		3-Way	
Voltage (VDC)*	12	24	12	24	12	24	12	24	12	24	12	24	12	24	12	24
Power (Watts)	1.1	1.1	1.7	1.6	1.7	1.6	1.7	1.6	1.7	1.6	1.7	1.6	1.7	1.6	1.7	1.6
Resistance (Ohm)**	132	132 525		361	85	361	85	361	85	361	85	361	85	361	85	361
* . 50/																

* ± 5%, other voltages available on request

** ±5% @ 68°F, 20°C

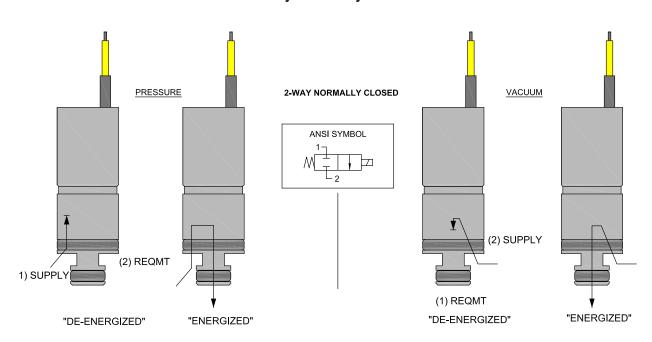
Pneumatic Interface/Mechanical Integration

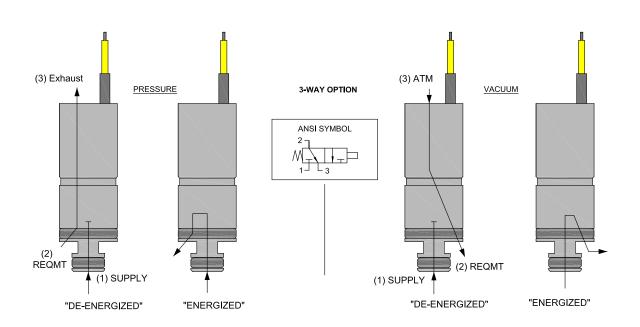




Dimensions

2-Way Valve Configuration


3-Way Valve Configuration

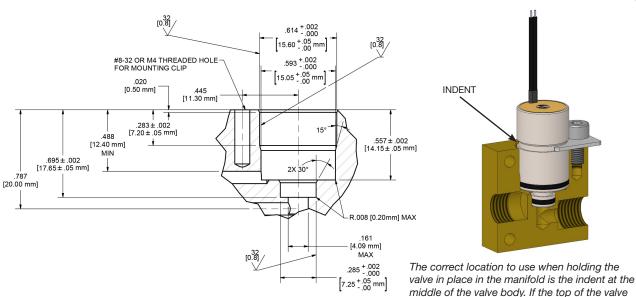


ANSI Symbols

2-Way Normally Closed

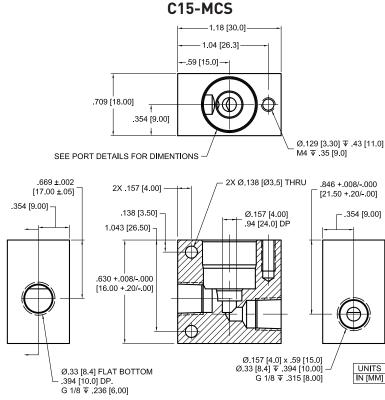
3-Way Normally Closed

Installation and Use


During installation of the C15 valve, the maximum force allowed to press it into the manifold is: 22.48 lbf (100 N) Lubrication is recommended (I.E. alcohol or DI water depending on compatibility constraints)

Recommended Valve Manifold Dimensions

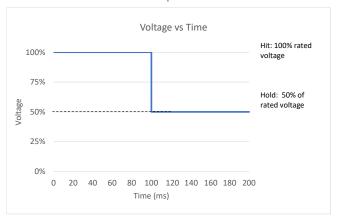
Recommended Valve Mounting


is used to hold the valve in place, the working pressure the valve will see, can push the valve upward and exceed the maximum insertion

force for the valve. This could damage the valve.

Installation and Use

C15 Evaluation Manifold Dimensions and Design


Installation and Use

Optional Reduced Power Control Method

"Hit and Hold" is an optional control method to increase power efficiency for the C15 series valves.

Hit and Hold is a common control method used to reduce component power consumption and heat generation without sacrificing performance. The "Hit" or "Spike" state refers to the rated voltage required to actuate the valve. The "Hold" state is a substantial reduction in the rated voltage (normally 50% of the rated voltage) that maintains the valve in an actuated state.

Hit and Hold control can be incorporated using several different approaches, including discrete component circuits or programmable logic. The graph below illustrates a voltage "Hit" and "Hold" control method, however pulse width modulation (PWM) is also an acceptable control method.

C15 Hit and Ho	ld Specification
Hit Voltage Level	Rated Voltage
Hold Voltage Level	50% of Rated Voltage
Minimum Hit Time	100 ms
Maximum Hit Time	N/A
PWM Frequency (Minimum)	1 kHz
Hold Nominal Duty Cycle	50%

This method greatly reduces power consumption because the valve only draws full current for a short period of time making it ideal for applications with sensitive power budgets.

Note: 50% duty cycle is a general recommendation; therefore, it is recommended that specific application testing is completed to verify the proper "hold" requirement. Factors that could impact hit and hold voltage levels include vibration, shock, pressure variation and pressure locations that are driven from specific usage. The hit and hold circuit design, combined with Parker's valve, need to be validated for each specific application to ensure the valve will actuate under all usage conditions. **Contact Factory for more details**.

Accessories

C15 Evaluation Manifold with clip and screw (Valve not included)

C15-MCS

Replacement Clip for C15-MCS

C15-C

Replacement Screw for C15-MCS

C15-S

Replacement O-Ring for C15 Valve, Large C15-LG

Replacement FKM 0-Ring for C15 Valve, Small C15-SM

Ordering Information

Sample Part ID	C15	- 2	24	FK	05	F	F	- 000
Description	Series	Configuration	Coil Voltage	Elastomer	Orifice	Mounting Style	Electrical Interface	Custom
	C15: 15 mm Cartridge Valve	2: 2-Way 3: 3-Way		FK: FKM	05: 0.020 in (0.5 mm) 10: 0.040 in (1.0 mm) 15: 0.060 in (1.5 mm) 20: 0.080 in (2.0 mm)		F: 3.2 in (80 mm) flying lead	000: Standard

Accessories									
C15-MCS: C15 Evaluation Manifold with Clip and Screw, Not supplied with the valve.									
C15-C: Replacement Clip used on C15-MCS*									
C15-S: Replacement Screw used on C15-MCS*									
C15-LG: Spare O-Ring for C15 Valve, Large**									
C15-SM: Spare O-Ring for C15 Valve, Small**									
* Not Supplied with Valve, Replacement Part for C15-MCS ** Supplied with Valve									

NOTE: For Evaluation - Please Add C15-MCS To Your Sample Order. All Valves Ship With O-Rings Installed

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button to configure your C15 valve. For CAD models and more detailed information, please visit us on the Web (www.parker.com/precisionfluidics/C15_GasCartridgeValve), call (+1.603.595.1500) or email at ppfinfo@parker.com.

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

C15 Valve Miniature Cartridge Liquid Valve

15 mm Miniature Liquid Cartridge Valve

Typical Markets

- Analytical Chemistry
- Clinical Diagnostics
- Environmental Monitoring
- Print

Typical Applications

- Reagent Addition
- Wash
- Waste
- Flow Control
- Large format Inkjet systems

The Series C15 is a miniature cartridge style solenoid valve with a unique design that combines small size, light weight and low power consumption with high flow repeatability and fast response time over an exceptionally long life, up to 500 million cycles. Available in a 2-way configuration, the valve is manifold mounted utilizing a simple securing system reducing assembly time.

Features

- Variety of orifice sizes with pressures up to 145 PSI (10 bar).
- Floating frictionless plunger enables reliable and repeatable operation up to 500 Million cycles.
- Low power design reduces heat and energy consumption.
- Cartridge configuration enables compact integration saving space and weight.
- Simple mechanical fastening prevents valve being dislodged due to vibration or pressure spikes.
- RoHS & REACH compliant.

Product Specifications

Mechanical

Valve Type:

Solenoid Cartridge Valve 2-Way Normally Closed (NC)

Media: Gases* and Liquids (See details in gas datasheet)

Operating Environment:

32°F to 122°F (0°C to 50°C)

Storage Environment:

-40°F to 158°F (-40°C to 70°C)

Dimensions:

- Diameter: 0.59 in (15 mm)
- Length: 1.14 in (29 mm)

Porting:

- Cartridge Seal

Weight: 0.78 oz (22 g)

Internal Volume:

2-Way: 391 µL

	Orifice Type		0.020 in (0.5 mm)	0.040 in (1.0 mm)	0.060 in (1.5 mm)	0.080 in (2.0 mm)
			2-Way	2-Way	2-Way	2-Way
ع ح		PSI	145	116	58	22
Vacuum	sure	Bar	10	8	4	1.5
Max V	Pressu	Cv	0.01	0.032	0.058	0.093
_		CM (water)	400	1160	1670	1640

Electrical

Voltage (VDC):

12 and 24 VDC ± 5%

(Other voltages available on request.)

Electrical Connections:

3.2 in (80 mm) Flying Leads

Power:

Typical 1.1W - 1.7W

(Please see Table 1 for more details)

Wetted Materials

Body:

Stainless Steel Series 300 and 400

Seals: (Internal and External)

FKM, EPDM

FFKM available on request

Performance Characteristics

Response:

10 ms Maximum, Cycling

Proof Pressure:

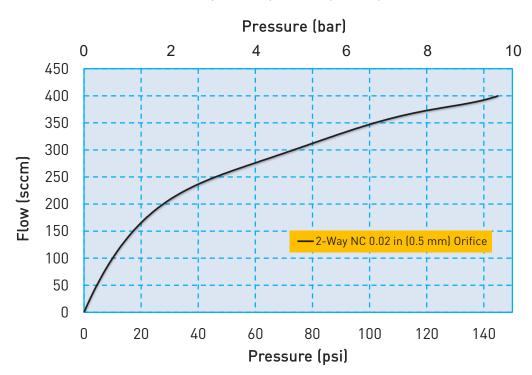
120% of Rated Maximum Pressure

Recommended Filtration:

10 µm

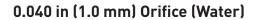
Reliability:

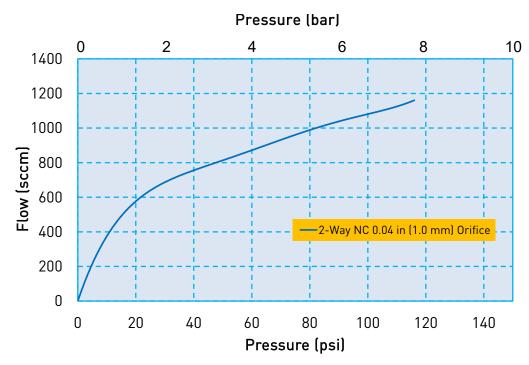
2-Way: 500 Million Cycles 0.90 Reliability Factor 95% Confidence

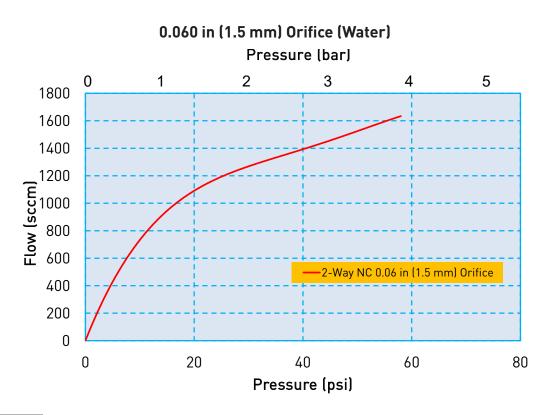


Flow Curve

Flow Curve

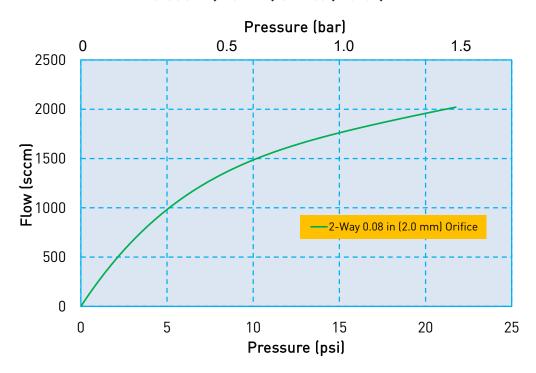

0.020 in (0.5 mm) Orifice (Water)





C15 Miniature Liquid Cartridge Valve

Flow Curve



Flow Curve

0.080 in (2.0 mm) Orifice (Water)

Electrical Interface

Wire Leads
Standard: 3.2 in (80 mm) Wire Leads, stripped at end

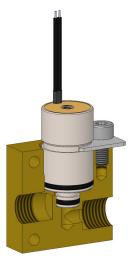
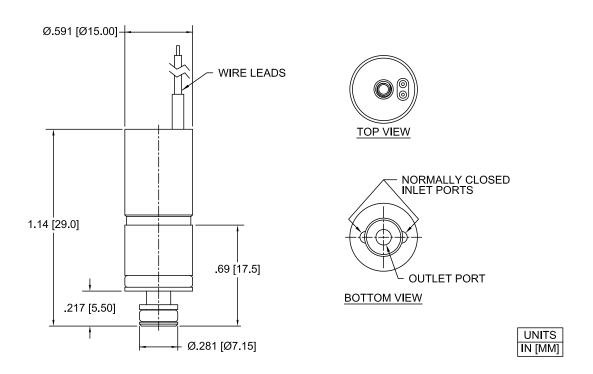
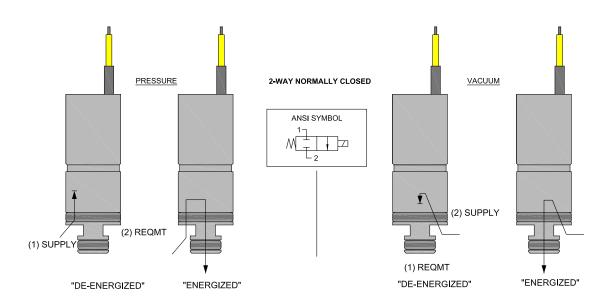

Electrical Requirements

Table 1

Orifice	0.02 in (0.5 mm)	5 mm) 0.04 in (1.0 mm)		0.06 in (1.5 mm)	0.08 in (2.0 mm)				
Valve Type	2-V	Vay	2-V	2-Way		Vay	2-Way				
Voltage (VDC)*	12	24	12	24	12	24	12	24			
Power (Watts)	1.1	1.1	1.7	1.6	1.7	1.6	1.7	1.6			
Resistance (Ohm)**	132	525	85	361	85	361	85	361			
* ± 5%, other voltages available on request											
			** ±5% @	68°F, 20°C							

Liquid Interface/Mechanical Integration



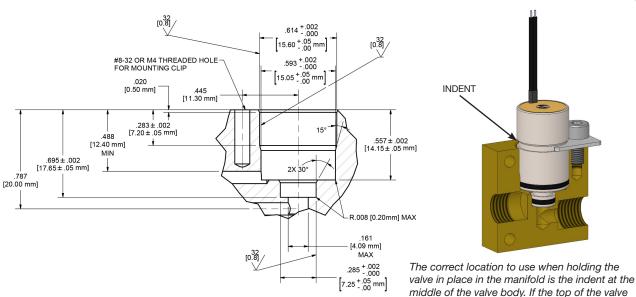

Dimensions

2-Way Valve Configuration

ANSI Symbols

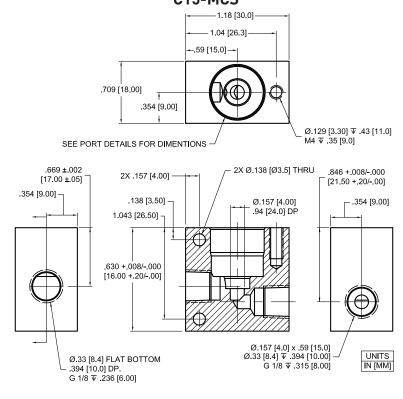
2-Way Normally Closed

Installation and Use


During installation of the C15 valve, the maximum force allowed to press it into the manifold is: 22.48 lbf (100 N) Lubrication is recommended (I.E. alcohol or DI water depending on compatibility constraints)

Recommended Valve Manifold Dimensions

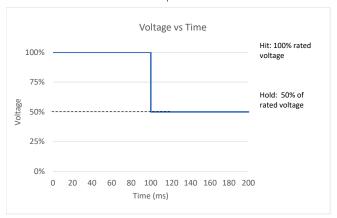
Recommended Valve Mounting


is used to hold the valve in place, the working pressure the valve will see, can push the valve upward and exceed the maximum insertion

force for the valve. This could damage the valve.

Installation and Use

C15 Evaluation Manifold Dimensions and Design C15-MCS


Installation and Use

Optional Reduced Power Control Method

"Hit and Hold" is an optional control method to increase power efficiency for the C15 series valves.

Hit and Hold is a common control method used to reduce component power consumption and heat generation without sacrificing performance. The "Hit" or "Spike" state refers to the rated voltage required to actuate the valve. The "Hold" state is a substantial reduction in the rated voltage (normally 50% of the rated voltage) that maintains the valve in an actuated state.

Hit and Hold control can be incorporated using several different approaches, including discrete component circuits or programmable logic. The graph below illustrates a voltage "Hit" and "Hold" control method, however pulse width modulation (PWM) is also an acceptable control method.

C15 Hit and Hold Specification								
Hit Voltage Level	Rated Voltage							
Hold Voltage Level	50% of Rated Voltage							
Minimum Hit Time	100 ms							
Maximum Hit Time	N/A							
PWM Frequency (Minimum)	1 kHz							
Hold Nominal Duty Cycle	50%							

This method greatly reduces power consumption because the valve only draws full current for a short period of time making it ideal for applications with sensitive power budgets.

Note: 50% duty cycle is a general recommendation; therefore, it is recommended that specific application testing is completed to verify the proper "hold" requirement. Factors that could impact hit and hold voltage levels include vibration, shock, pressure variation and pressure locations that are driven from specific usage. The hit and hold circuit design, combined with Parker's valve, need to be validated for each specific application to ensure the valve will actuate under all usage conditions. **Contact Factory for more details**.

Chemical Compatibility Chart*

		Seal Options						
Chemical	FFKM	FKM	EPDM	Stainless Steel				
DI Water	1	1	1	1				
Methanol	1	4	1	2				
Isopropanol	1	1	1	1				
Ethanol	1	3	1	1				
Acetonitrile	1	4	1					
Tetrahydrofuran	1	4	4					
Toluene	1	2	4	1				
MEK	4	1	1	3				
Organic Acids - Dilute	1	1	1	4				
Non Organic Acids - Dilute	1	1	1	2				
Bases - Dilute	1	1	1	1				
Saline	1	1	1	2				
Bleach 12%	2	1	1	4				
Sodium Hydroxide 20%	1	2	1	2				

^{*}The above is an Abbreviated Chemical Compatibility Chart. Please consult factory for additional information.

Compatibility Legend

- 1. EXCELLENT Minimal or no effect
- 2. GOOD Possible swelling and or loss of physical properties
- 3. DOUBTFUL Moderate or severe swelling and loss of physical properties
- 4. NOT RECOMMENDED Severe effect and should not be considered

Accessories

C15 Evaluation Manifold with clip and screw (Valve not included)

Replacement Clip for C15-MCS C15-C

Replacement Screw for C15-MCS

C15-S

Replacement O-Ring for C15 Valve, Large

C15-LG (FKM) C15-LGE (EPDM)

Replacement FKM 0-Ring for C15 Valve, Small

C15-SM (FKM) C15-SME (EPDM)

Ordering Information

Sample Part ID	C15	- 2	24	FK	05	F	F	- 000
Description	Series	Configuration	Coil Voltage	Elastomer	Orifice	Mounting Style	Electrical Interface	Custom
Options	C15: 15 mm Cartridge Valve			FK: FKM	05: 0.020 in (0.5 mm) 10: 0.040 in (1.0 mm) 15: 0.060 in (1.5 mm) 20: 0.080 in (2.0 mm)		F: 3.2 in (80 mm) flying lead	000: Standard

Accessories C15-MCS: C15 Evaluation Manifold with Clip and Screw, Not supplied with the valve. C15-C: Replacement Clip used on C15-MCS* C15-S: Replacement Screw used on C15-MCS* C15-LG: Spare O-Ring for C15 Valve, FKM, Large** C15-LGE: Spare O-Ring for C15 Valve, EPDM, Large** C15-SM: Spare O-Ring for C15 Valve, FKM, Small** C15-SME: Spare O-Ring for C15 Valve, EPDM, Small** * Not Supplied with Valve, Replacement Part for C15-MCS ** Supplied with Valve

NOTE: For Evaluation - Please Add C15-MCS To Your Sample Order. All Valves Ship With O-Rings Installed

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button to configure your C15 valve. For CAD models and more detailed information, please visit us on the Web (www.parker.com/precisionfluidics/C15_LiquidCartridgeValve), call (+1.603.595.1500) or email at ppfinfo@parker.com.

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

-- Parker

C21 Valve Miniature Cartridge Solenoid Valve

21 mm Miniature Cartridge Valve

Typical Markets

- Medical and Analytical Gas Control
- Respiratory & Anesthesia
- Patient Therapy

Typical Applications

- Compression Therapy
- Oxygen Concentrators & Conservers
- Negative Pressure Wound Therapy

The Series C21 is a miniature cartridge style solenoid valve with a unique design that combines small size, light weight and low power consumption with high flow repeatability and fast response time over an exceptionally long life, of up to 20 million cycles. Available in 2-way and 3-way configurations, the valve is manifold mounted utilizing a simple securing system reducing assembly time.

Features

- Variety of orifice sizes with pressures up to 145 PSI (10 bar).
- Floating frictionless plunger enables reliable and repeatable operation of up to 20 Million cycles.
- Low power design reduces heat and energy consumption.
- Cartridge configuration enables compact integration saving space and weight.
- Simple mechanical fastening prevents valve being dislodged due to vibration or pressure spikes.
- RoHS & REACH compliant.

Product Specifications

Mechanical

Valve Type:
Solenoid Cartridge Valve

3-Way

2-Way Normally Closed (NC)

Media: Gases and Liquids* (See more Information in Liquid Datasheet)

Operating Environment:

32°F to 122°F (0°C to 50°C)

Storage Environment:

-40°F to 158°F (-40°C to 70°C)

Dimensions:

- Diameter: 0.28 in (7 mm)

- Length: 0.79 in (20 mm)

Porting:

- Cartridge Seal

Weight: 2.17 oz (60 g)

Internal Volume:

2-Way: 1173µL 3-Way: 1376µL

	Orifice	0.040 in	(1.0 mm)	0.080 in	(2.0 mm)	0.12 in (3.0 mm)	0.16 in (4.0 mm)		
	Туре	2-Way	3-Way	2-Way	3-Way	2-Way	3-Way	2-Way	3-Way	
త	PSI	145	145	116	87	58	36	29	15	
Vacuum	Bar	10	10	8	6	4	2.5	2	1	
Max Va		0.03	0.03	0.08	0.07	0.13	0.11	0.18	0.14	
ž	SLPM (air)	67.5	60	140	90	124	70	101	55	

Electrical

Voltage (VDC):

12 and 24 VDC ± 5%

(Other voltages available on request.)

Electrical Connections:

3.2 in (80 mm) Flying Leads

Power:

Typical 2.5W - 2.6W

(Please see Table 1 for more details)

Wetted Materials

Body:

Stainless Steel

Seals: (Internal and External)

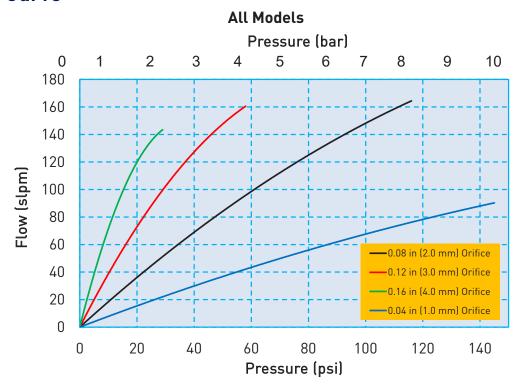
FKM, EPDM

Performance Characteristics

Response:

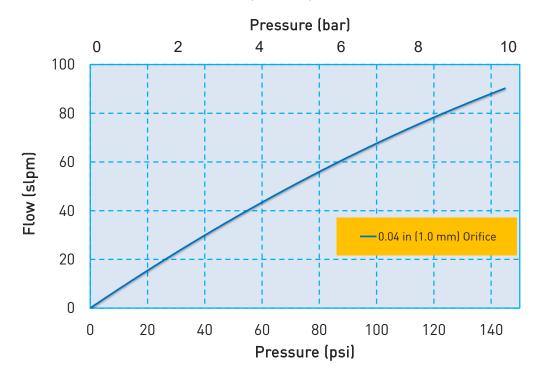
10 ms Maximum, Cycling

Recommended Filtration:


10 µm

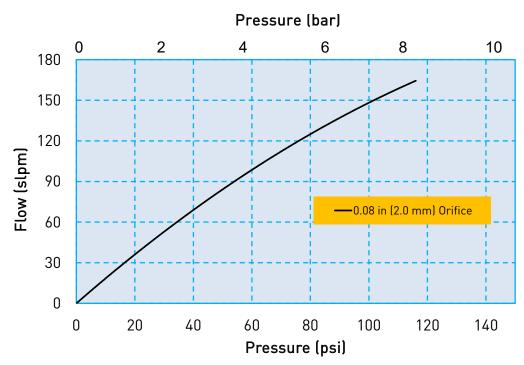
Reliability:

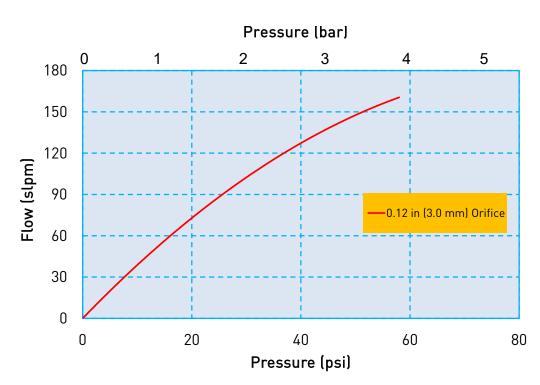
2-Way: 20 Million Cycles 3-Way: 20 Million Cycles 0.90 Reliability Factor 95% Confidence



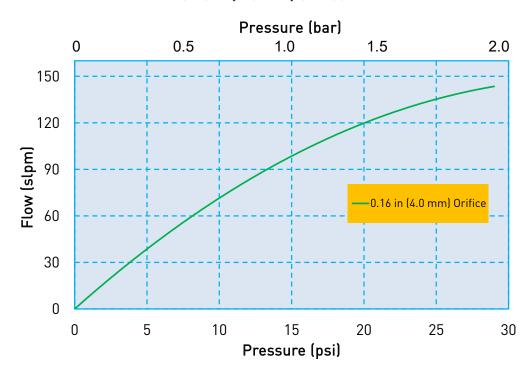
Flow Curve

Flow Curve


0.040 in (1.0 mm) Orifice



Flow Curve


0.120 in (3.0 mm) Orifice

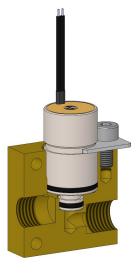
Flow Curve

0.16 in (4.0 mm) Orifice

Electrical Interface

Wire Leads
Standard: 3.2 in (80 mm) Wire Leads, stripped at end

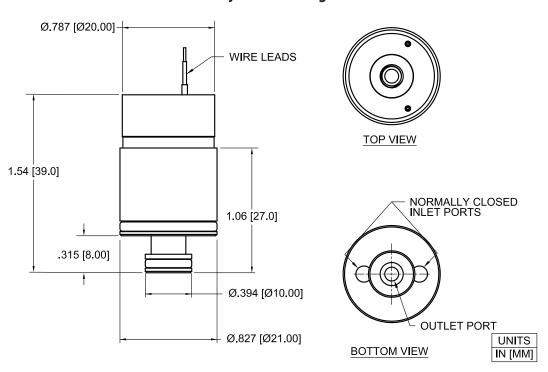
Electrical Requirements

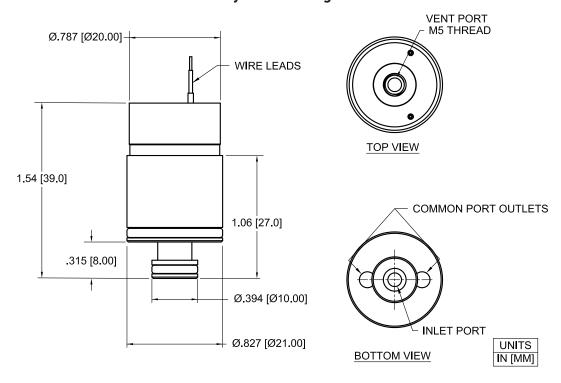

Table 1

Orifice	0	.040 in	(1.0 m	m)	0	.080 in	(2.0 m	m)	0	.12 in (3.0 mn	n)	0	.16 in (4.0 mn	n)
Valve Type	2-V	Vay	3-1	Vay	2-V	Vay	3-V	Vay	2-V	Vay	3-V	Vay	2-V	Vay	3-V	Vay
Voltage (VDC)*	12	24	12	24	12	24	12	24	12	24	12	24	12	24	12	24
Power (Watts)	2.6	2.5	2.6	2.5	2.6	2.5	2.6	2.5	2.6	2.5	2.6	2.5	2.6	2.5	2.6	2.5
Resistance (Ohm)**	56	235	56	235	56	235	56	235	56	235	56	235	56	235	56	235
				=0/												

 $^{^{*}\,}$ \pm 5%, other voltages available on request

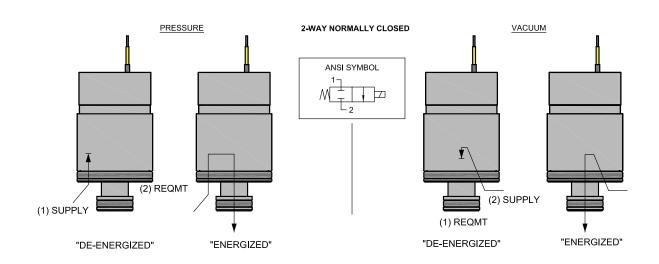
Pneumatic Interface/Mechanical Integration

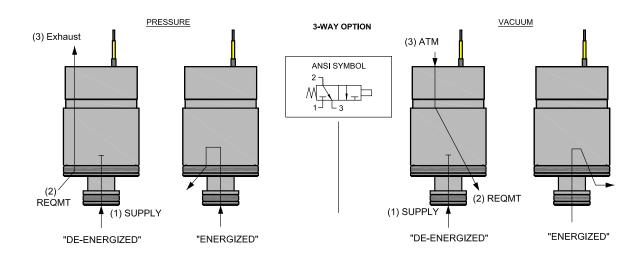



^{** ±5% @ 68°}F, 20°C

Dimensions

2-Way Valve Configuration

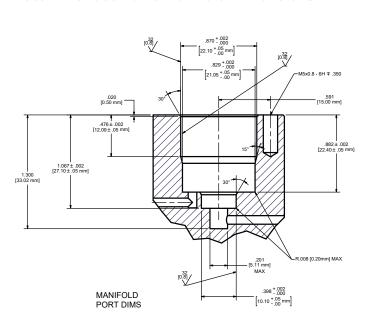

3-Way Valve Configuration

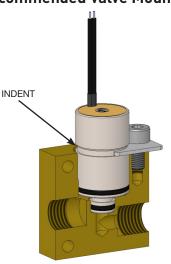


ANSI Symbols

2-Way Normally Closed

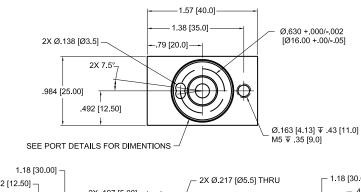
3-Way Normally Closed

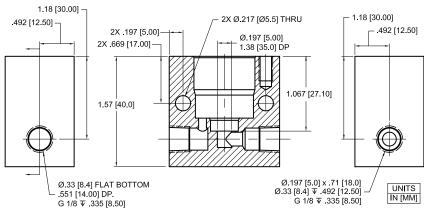



Installation and Use

During installation of the C21 valve, the maximum force allowed to press it into the manifold is: 44.96 lbf (200 N) Lubrication is recommended (I.E. alcohol or DI water depending on compatibility constraints)

Recommended Valve Manifold Dimensions

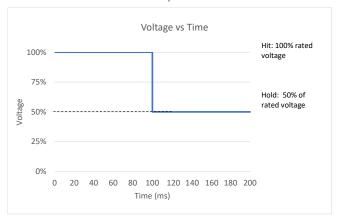

Recommended Valve Mounting



The correct location to use when holding the valve in place in the manifold is the indent at the middle of the valve body. If the top of the valve is used to hold the valve in place, the working pressure the valve will see, can push the valve upward and exceed the maximum insertion force for the valve. This could damage the valve.

Installation and Use

C21 Evaluation Manifold Dimensions and Design C21-MCS


Installation and Use

Optional Reduced Power Control Method

"Hit and Hold" is an optional control method to increase power efficiency for the C21 series valves.

Hit and Hold is a common control method used to reduce component power consumption and heat generation without sacrificing performance. The "Hit" or "Spike" state refers to the rated voltage required to actuate the valve. The "Hold" state is a substantial reduction in the rated voltage (normally 50% of the rated voltage) that maintains the valve in an actuated state.

Hit and Hold control can be incorporated using several different approaches, including discrete component circuits or programmable logic. The graph below illustrates a voltage "Hit" and "Hold" control method, however pulse width modulation (PWM) is also an acceptable control method.

C21 Hit and Hold Specification									
Hit Voltage Level	Rated Voltage								
Hold Voltage Level	50% of Rated Voltage								
Minimum Hit Time	100 ms								
Maximum Hit Time	N/A								
PWM Frequency (Minimum)	1 kHz								
Hold Nominal Duty Cycle	50%								

This method greatly reduces power consumption because the valve only draws full current for a short period of time making it ideal for applications with sensitive power budgets.

Note: 50% duty cycle is a general recommendation; therefore, it is recommended that specific application testing is completed to verify the proper "hold" requirement. Factors that could impact hit and hold voltage levels include vibration, shock, pressure variation and pressure locations that are driven from specific usage. The hit and hold circuit design, combined with Parker's valve, need to be validated for each specific application to ensure the valve will actuate under all usage conditions. **Contact Factory for more details**.

Accessories

C21 Evaluation Manifold with clip and screw (Valve not included)

C21-MCS

Replacement Clip for C21-MCS

C21-C

Replacement Screw for C21-MCS

C21-S

Replacement O-Ring for C21 Valve, Large C21-LG

Replacement FKM 0-Ring for C21 Valve, Small C21-SM

Ordering Information

Sample Part ID	C21	- 2	24	FK	10	F	F	- 000
Description	Series	Configuration	Coil Voltage	Elastomer	Orifice	Mounting Style	Electrical Interface	Custom
Options	C21: 15 mm Cartridge Valve			FK: FKM	10: 0.040 in (1.0 mm) 20: 0.080 in (2.0 mm) 30: 0.12 in (3.0 mm) 40: 0.16 in (4.0 mm)	F: Face Seal	F: 3.2 in (80 mm) flying lead	000: Standard

Accessories										
C21-MCS: C21 Evaluation Manifold with Clip and Screw, Not supplied with the valve.										
C21-C: Replacement Clip used on C21-MCS*										
C21-S: Replacement Screw used on C21-MCS*										
C21-LG: Spare O-Ring for C21 Valve, Large**										
C21-SM: Spare O-Ring for C21 Valve, Small**										
* Not Supplied with Valve, Replacement Part for C21-MC	S ** Supplied with Valve									

NOTE: For Evaluation - Please Add C21-MCS To Your Sample Order. All Valves Ship With O-Rings Installed

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button to configure your C21 valve. For CAD models and more detailed information, please visit us on the Web (www.parker.com/precisionfluidics/C21_GasCartridgeValve), call (+1.603.595.1500) or email at ppfinfo@parker.com.

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

Parker

C21 Valve Miniature Cartridge Liquid Valve

21 mm Miniature Liquid Cartridge Valve

Typical Markets

- Analytical Chemistry
- Clinical Diagnostics
- Agent Detection
- Print

Typical Applications

- · Large format Inkjet systems
- · Reagent Addition
- Wash
- Waste
- Flow Control

The Series C21 is a miniature cartridge style solenoid valve with a compact 21 mm diameter. This unique design combines compact size, light weight and low power consumption with high flow repeatability and fast response time over an exceptionally long life up to ??? million cycles. Available in 2-way configuration, the valve is manifold mounted utilizing a simple securing system reducing assembly time.

Features

- Variety of orifice sizes with pressures up to 145 PSI (10 bar).
- Floating frictionless plunger enables reliable and repeatable operation up to 20 Million cycles.
- Low power design reduces heat and energy consumption.
- Compact reduces space and weight.
- 100% calibrated ensuring minimal valve to valve variation.
- RoHS & REACH compliant.

Product Specifications

Mechanical

Valve Type:
Solenoid Cartridge Valve
2-Way Normally Closed (NC)
Media: Gases* and Liquids
(See more Information in Gas
Datasheet)
Operating Environment:
32°F to 122°F (0°C to 50°C)
Storage Environment:
-40°F to 158°F (-40°C to 70°C)
Dimensions:
- Diameter: 0.28 in (7 mm)
- Length: 0.79 in (20 mm)
Porting:
- Cartridge Seal
Weight: 2.17 oz (60 g)
Internal Volume:
2-Way: 1173μL

	Orifice		0.040 in (1.0 mm)	0.080 in (2.0 mm)	0.12 in (3.0 mm)	0.16 in (4.0 mm)
		Туре	2-Way	2-Way	2-Way	2-Way
عة E	ē	PSI	145	116	58	29
acuum	ressur	Bar	10	8	4	2
Max V	Pre	Cv	0.03	0.08	0.13	0.18
_	S	SCCM (water) 1480		3350	3770	3630

Electrical

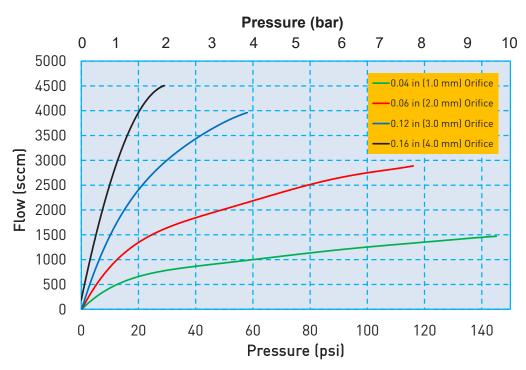
Voltage (VDC): 12 and 24 VDC ± 5% (Other voltages available on request.) **Electrical Connections:** 3.2 in (80 mm) Flying Leads Power:

Watted Materials

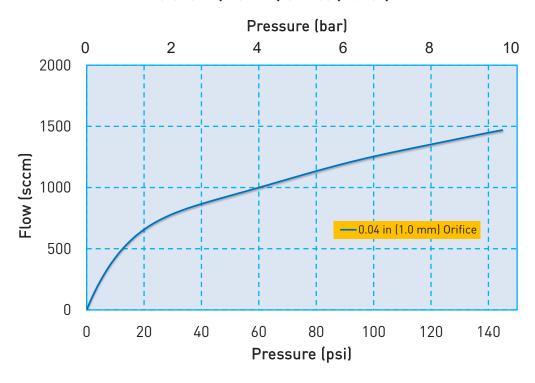
Typical 2.5W - 2.6W

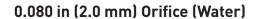
(Please see Table 1 for more details)

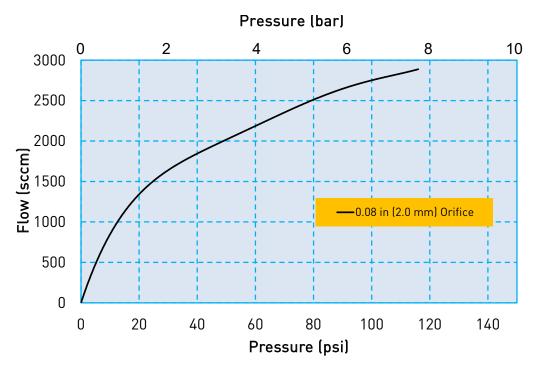
Performance Characteristics

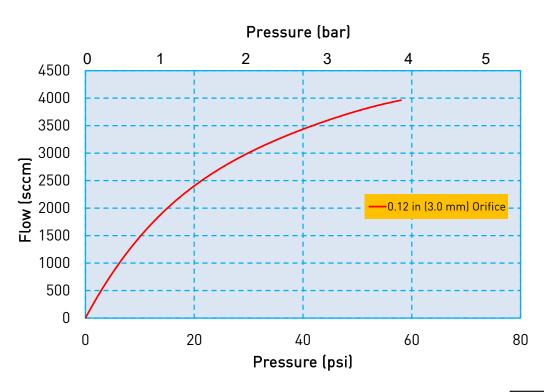

Response:
10 ms Maximum, Cycling
Recommended Filtration:
10 μm
Reliability:
2-Way: 20 Million Cycles
0.90 Reliability Factor
95% Confidence

^{*}Please contact factory for additional details on gas compatibility.

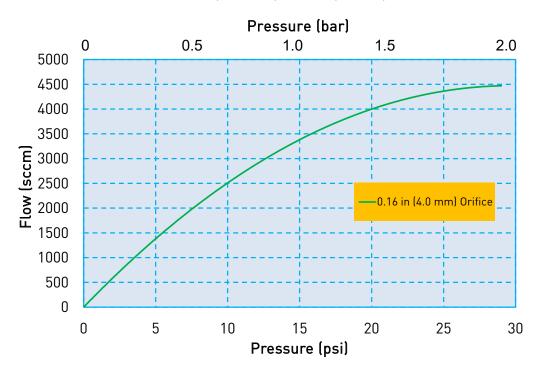

Flow Curve


Flow Curve


0.040 in (1.0 mm) Orifice (Water)



Flow Curve


0.120 in (3.0 mm) Orifice (Water)

Flow Curve

0.160 in (4.0 mm) Orifice (Water)

Electrical Interface

Wire Leads
Standard: 3.2 in (80 mm) Wire Leads, stripped at end

Electrical Requirements

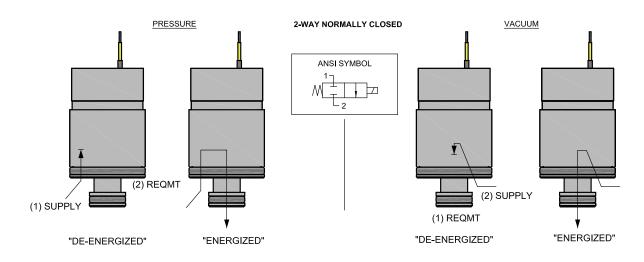
Table 1

Orifice	0.040 in	[1.0 mm]	0.080 in (2.0 mm)		0.12 in (3.0 mm)	0.16 in (4.0 mm)		
Valve Type	2-V	Vay	2-Way		2-Way		2-Way		
Voltage (VDC)*	12	24	12	24	12	24	12	24	
Power (Watts)	2.6	2.5	2.6	2.5	2.6	2.5	2.6	2.5	
Resistance (Ohm)**	56	235	56	235	56	235	56	235	

 $^{^{*}\,}$ \pm 5%, other voltages available on request

Liquid Interface/Mechanical Integration

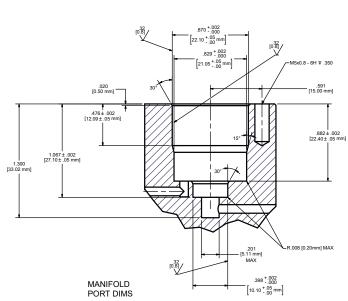
^{** ±5% @ 68°}F, 20°C

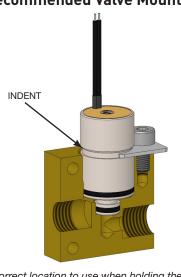

Dimensions

2-Way Valve Configuration

ANSI Symbols

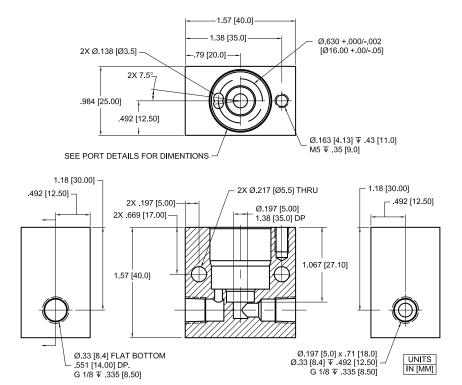
2-Way Normally Closed




Installation and Use

During installation of the C21 valve, the maximum force allowed to press it into the manifold is: 44.96 lbf (200 N) Lubrication is recommended (I.E. alcohol or DI water depending on compatibility constraints)

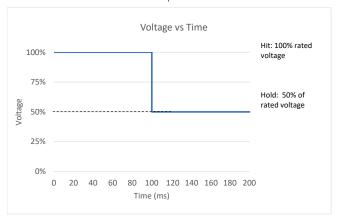
Recommended Valve Manifold Dimensions


Recommended Valve Mounting

The correct location to use when holding the valve in place in the manifold is the indent at the middle of the valve body. If the top of the valve is used to hold the valve in place, the working pressure the valve will see, can push the valve upward and exceed the maximum insertion force for the valve. This could damage the valve.

Installation and Use

C21 Evaluation Manifold Dimensions and Design C21-MCS


Installation and Use

Optional Reduced Power Control Method

"Hit and Hold" is an optional control method to increase power efficiency for the C21 series valves.

Hit and Hold is a common control method used to reduce component power consumption and heat generation without sacrificing performance. The "Hit" or "Spike" state refers to the rated voltage required to actuate the valve. The "Hold" state is a substantial reduction in the rated voltage (normally 50% of the rated voltage) that maintains the valve in an actuated state.

Hit and Hold control can be incorporated using several different approaches, including discrete component circuits or programmable logic. The graph below illustrates a voltage "Hit" and "Hold" control method, however pulse width modulation (PWM) is also an acceptable control method.

C21 Hit and Ho	ld Specification
Hit Voltage Level	Rated Voltage
Hold Voltage Level	50% of Rated Voltage
Minimum Hit Time	100 ms
Maximum Hit Time	N/A
PWM Frequency	1 kHz
(Minimum)	1 KH2
Hold Nominal Duty Cycle	50%

This method greatly reduces power consumption because the valve only draws full current for a short period of time making it ideal for applications with sensitive power budgets.

Note: 50% duty cycle is a general recommendation; therefore, it is recommended that specific application testing is completed to verify the proper "hold" requirement. Factors that could impact hit and hold voltage levels include vibration, shock, pressure variation and pressure locations that are driven from specific usage. The hit and hold circuit design, combined with Parker's valve, need to be validated for each specific application to ensure the valve will actuate under all usage conditions. **Contact Factory for more details**.

Chemical Compatibility Chart*

		Seal Options						
Chemical	FFKM	FFKM FKM EPDM Sta						
DI Water	1	1	1	1				
Methanol	1	4	1	2				
Isopropanol	1	1	1	1				
Ethanol	1	3	1	1				
Acetonitrile	1	4	1					
Tetrahydrofuran	1	4	4					
Toluene	1	2	4	1				
MEK	4	1	1	3				
Organic Acids - Dilute	1	1	1	4				
Non Organic Acids - Dilute	1	1	1	2				
Bases - Dilute	1	1	1	1				
Saline	1	1	1	2				
Bleach 12%	2	1	1	4				
Sodium Hydroxide 20%	1	2	1	2				

Compatibility Legend

- 1. EXCELLENT

 Minimal or no effect
- GOOD
 Possible swelling and or loss of physical properties
- 3. DOUBTFUL

 Moderate or severe swelling
 and loss of physical properties
- 4. NOT RECOMMENDED

 Severe effect and should not be considered

Accessories

C21 Evaluation Manifold with clip and screw (Valve not included)

C21-MCS

Replacement Clip for C21-MCS

C21-C

Replacement Screw for C21-MCS

C21-S

Replacement O-Ring for C21 Valve, Large

C21-LG (FKM) C21-LGE (EPDM)

Replacement FKM 0-Ring for C21 Valve, Small

C21-SM (FKM) C21-SME (EPDM)

Ordering Information

Sample Part ID	C 21	-	2	24	FK	10	F	F	-	000
Description	Series		Configuration	Coil Voltage	Elastomer	Orifice	Mounting Style	Electrical Interface		Custom
Options	C21: 15 mm Cartridge Valve	2	.,		FK: FKM	10: 0.040 in (1.0 mm) 20: 0.080 in (2.0 mm) 30: 0.12 in (3.0 mm) 40: 0.16 in (4.0 mm)	F: Face Seal	F: 3.2 in (80 mm) flying lead		000: Standard

Accessories
C21-MCS: C21 Evaluation Manifold with Clip and Screw, Not supplied with the valve.
C21-C: Replacement Clip used on C21-MCS*
C21-S: Replacement Screw used on C21-MCS*
C21-LG: Spare O-Ring for C21 Valve, FKM, Large**
C21-LGE: Spare O-Ring for C21 Valve, EPDM, Large**
C21-SM: Spare O-Ring for C21 Valve, FKM, Small**
C21-SME: Spare O-Ring for C21 Valve, EPDM, Small**
* Not Supplied with Valve, Replacement Part for C21-MCS ** Supplied with Valve

NOTE: For Evaluation - Please Add C21-MCS To Your Sample Order. All Valves Ship With O-Rings Installed

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button to configure your C21 valve. For CAD models and more detailed information, please visit us on the Web (www.parker.com/precisionfluidics/C21_LiquidCartridgeValve), call (+1.603.595.1500) or email at ppfinfo@parker.com.

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

-Parker

NOTES

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY, AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

© 2014 Parker Hannifin Corporation

Parker Hannifin Corporation

Precision Fluidics Division

26 Clinton Dr., Unit 103

Hollis, NH 03049

phone 603 595 1500

fax 603 595 8080

www.parker.com/precisionfluidics